LOAD& STRESS ANALYSIS

- MET 4501 --- LECTURE NOTES --- PROF. LEAH GINSBERG-

DEFINITIONS

SYSTEM

THE WORD SYSTEM WILL BE USED TO DENOTE ANY ISOLATED PART OR PORTION OF A MACHINE OR STRUCTURE THAT WE WISH TO STUDY.

EQUILIBRIUM

A SYSTEM IS IN EQUILIBRIUM IF IT IS
MOTIONLESS OR, AT MOST, HAS CONSTANT
VELOCITY SUCH THAT THERE IS ZERO
ACCELERATION: THEN, THE SUM OF
FORCES AND MOMENTS ACTING ON THE
SYSTEM BALANCE SUCH THAT ZF=0 & ZM=0.

FREE-BODY DIAGRAM (FBD)

A FBD IS A GRAPHICAL REPRESENTATION USED TO VISUALIZE THE FORCES & MOMENTS ACTING ON A SYSTEM.

SHEAR FORCE & BENDING MOMENT IN BEAMS

LETS CONSIDER THE BEAM BELOW, & TAKE A CUT AT X1:

(N=O ASTHERE
ARE NO AXIAL
LOADS APPLIED)

THE INTERNAL SHEAR FORCE (V) AND BENDING MOMENT (M) MUST ACT ON THE CUT SURFACE TO ENSURE EQUILIBRIUM.

SIGN CONVENTIONS FOR BENDING & SHEAR:

POSITIVE BENDING

PUSITIVE SHEAR

NEGATIVE

NEGATIVE SHEAR

NOW, LETS CONSIDER A BEAM WITH AN ARBITRARY DISTRIBUTED LOAD. NOTE THAT q(x) is called the LOAD INTENSITY.

FUNCTION	GRAPHICAL REPRESENTATION	ORDER
CONCENTRATED MUMENT	* 1	0 (-2)
CONCENTRATED FORCE	¥↑ ↑ ->x	0(-1)
UNIT STEP	y 4	0(0)
RAMP	y ↑x	0(1)
PARABOLIC	¥↑ →x	0(2)

EXAMPLE : DRAW SHEAR & MOMENT DIAGRAMS FOR THE CANTILEVER BEAM FIRST, SOLVE FOR REACTIONS ATA. 20 N/m 240 N.cm 2F=0: RA-(20m)(4cm)=0 RA = 80 0N $\leq M_A = D : M_A - (20 \frac{N}{cm}) (4 cm) (5 cm)$ 1(H)A STEP RAMP +240 N·cm =0 MA = -160 N.cm PARABOLA STEP Mo=240 M(N.CM)A THEN , PLOT V & M CURVES Mc=240 RAMP WE-80 Vmax = 80 N

Mmax = 240 N·cm

STRESS COMPONENTS

A COMPLETE STATE OF STRESS IS DEFINED BY NINE STRESS COMPONENTS, σ_x , σ_y , σ_z , τ_{xy} , τ_{xz} , τ_{yx} , τ_{yz} , τ_{zx} , and τ_{zy} .

IN MOST CASES (WHEN ANGULAR MOMENTUM IS CONSERVED),

"CROSS-SHEARS" ARE EQUAL.

$$T_{yx} = T_{xy}$$
 $T_{zy} = T_{yz}$
 $T_{xz} = T_{zx}$

A STATE OF PLANE STRESS OCCURS WHEN STRESSES ON ONE SURFACE ARE ZERO, AS SHOWN BELOW.

$$\sigma_z = 0$$
 $T_{xz} = T_{zx} = 0$
 $T_{yz} = T_{zy} = 0$

NOW, LETS TAKE A CUT THROUGHTHE ELEMENT ABOVE AT AN ANGLE (\$\phi) AND APPLY EQUILIBRIUM (SIMILAR TO HOW WE DID WHEN CUTTING THROUGH A BEAM).

$$\Sigma F_x = 0$$
: $O_x dy + T_{xy} dx + ...$
 $\Sigma F_y = 0$: $O_y dx - T_{xy} dy + ...$

THESE ARE CALLED THE PLANE-STRESS TRANSFORMATION EQNS.

DIFFERENTIATING THE PLANE-STRESS TRANSFORMATION EQNS WITH RESPECT TO \$\phi\$ AND SETTING THE RESULT EQUAL TO 0 MAXIMIZES OUT AND GIVES:

THIS MEANS THAT WHEN O IS MAXIMIZED, T = 0, AND WHEN T IS MAXIMIZED, O IS THE AVERAGE OF Ox AND Oy.

SUBSTITUTING ANGLES $2\phi_p$ and $2\phi_s$ INTO THE PLANE STRESS TRANSFORM. EQNS YIELDS OUR PRINCIPAL STRESSES σ_i AND σ_2 .

$$\sigma_1, \sigma_2 = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \Gamma_{xy}^2}$$

AND THE EXTREME-VALUE SHEAR STRESSES, T, AND T2.

$$T_{1}T_{2} = \pm \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + T_{xy}^{2}}$$

MOHR'S CIRCLE

$$R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + T_{xy}^2}$$

IN THE KITCHEN,

- · CLOCK IS ABOVE
- · COUNTER IS BELOW

(TO HELP REMEMBER COW IS POSITIVE AND COOM IS NEGATIVE)

EXAMPLE: CONSIDER A DOGBONE TENSILE SAMPLE SUBJECTED TO AN AXIAL LOAD F=10,000 N. THE SAMPLE IS 10mm WIDE AND 5mm THICK AT ITS SMALLEST CROSS-SECTION.

USE MOHR'S CIRCLE TO DETERMINE THE PRINCIPAL STRESSES AND MAXIMUM SHEAR STRESS.

$$\Delta y = \frac{F}{A} = \frac{10,000 \, \text{N}}{(10 \, \text{mm})(5 \, \text{mm})}$$

$$Q_x = 0$$

WHY THIS MATTERS:

DUCTILE MATERIALS FAIL IN SHEAR (TYPICALLY), WHILE BRITTLE MATERIALS TYPICALLY FAIL DUE TO MAXIMUM PRINCIPAL STRESSES.

NOW, LET'S SAY OUR LOSS-OF-FUNCTION STRESS IS 200 MPa. THEN, IF OUR DOGBONE IS MADE OUT OF A DUCTILE MATERIAL, OUR SAFETY FACTOR IS:

$$n = \frac{200 \text{ MPa}}{100 \text{ MPa}} = 2.0$$

WHILE IF IT IS MADE OUT OF A BRITTLE MATERIAL, $n = \frac{100 \text{ MPM}}{200 \text{ MPM}} = 1.0 \text{ (FAILURE PREDICTED)}$